Use of virtual learning environments: A theoretical model using decomposed expectancy disconfirmation theory

Fernando Antonio de Melo Pereira, Anatália Saraiva Martins Ramos, Adrianne Paula Vieira de Andrade, Bruna Miyuki Kasuya de Oliveira

Resumo


The present study aims to investigate the determinants of satisfaction and the resulting continuance intention use in e-learning context. The constructs of decomposed expectancy disconfirmation theory (DEDT) are evaluated from the perspective of users of a virtual learning environment (VLE) in relation to expectations and perceived performance. An online survey collected responses from 197 students of a public management course in distance mode. Structural equation modeling was operationalized by the method of partial least squares in Smart PLS software. The results showed that there is a relationship between quality, usability, value and value disconfirmation with satisfaction. Likewise, satisfaction proved to be decisive for the continuance intention use. However, there were no significant relationships between quality disconfirmation and usability disconfirmation with satisfaction. Based on the results, is discussed the theoretical and practical implications of the structural model found by the search.

Palavras-chave


E-learning; Continuance Intention Use; Satisfaction; Decomposed EDT

Texto completo:

PDF (English)

Referências


Biasutti, M. (2011). The student experience of a collaborative e-learning university module. Computers & Education, 57, pp. 1865-1875.

Brei, V. A., & Liberali, G. N. (2006). O uso da técnica de modelagem de equações estruturais na área de marketing: um estudo comparativo entre publicações no Brasil e no exterior. Revista de Administração Contemporânea - RAC, 10(4), pp. 131-151.

Carvalho, N. (2009). Dimensões da qualidade em um ambiente virtual de aprendizagem. Tese de Doutorado, Faculdade de Economia, Administração e Contabilidade - USP, São Paulo.

Chen, J. L. (2011). The effects of education compatibility and technological expectancy on e-learning acceptance. Computers & Education, 57, pp. 1501-1511.

Cheung, C. M., & Lee, M. K. (2011). Antecedents and consequences of user satisfaction with an e-learning portal. International Journal of Digital Society, 2(1).

Chiu, C. M., Hsu, M. H., Sun, S. Y., Lin, T. C., & Sun, P. C. (2005). Usability, quality, value and e-learning continuance decisions. Computers & Education, 45, pp. 399-416.

Chiu, C. M., Wang, E. T., Shih, F. J., & Fan, Y. W. (2011). Understanding knowledge sharing in virtual communities: An integration of expectancy disconfirmation and justice theories. Online Information Review, 35(1), pp. 134-153.

Chou, S. W., Min, H. T., Chang, Y. C., & Lin, C. T. (2010). Understanding continuance intention of knowledge creation using extended expectation-confirmation theory: An empirical study of Taiwan and China online communities. Behaviour & Information Technology, 29(6), pp. 557-570.

Corrar, L. J., Paulo, E., & Dias, J. F. (2007). Análise multivariada de dados: Para os cursos de Administração, Ciências Contábeis e Economia. São Paulo: Atlas.

Coursaris, C., Hassanein, K., Head, M., & Bontis, N. (2012). The impact of distractions on the usability and intention to use mobile devices for wireless data services. Computers in Human Behavior, 28, pp. 1439-1449.

Davis, F. D. (Set. 1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly.

DeLone, W., & McLean, E. R. (2003). The DeLone and McLean Model of information system success: A ten year update. Journal of Management Information, 19(4), pp. 9-30.

ENAP. (2008). Educação à distância em organizações públicas. Mesa Redonda de Pesquisa-Ação.

Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), pp. 175-191.

Fornell, C., & Larcker, D. F. (1981). Evaluating SEM with unbserved variables and measurement error. Journal of Marketing Research, 18, pp. 39-50.

Hair, J., Anderson, R., Taham, R., & Black, W. (2009). Análise multivariada de dados (6 ed.). Porto Alegre: Bookman.

Hair, J., Sarstedt, M., Ringle, C., & Mena, J. (2011). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of Academy of the Marketing Science, Methodological Paper.

Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, pp. 277-319.

Hoorens, V. (2012). Expectation. In: Elsevier, Encyclopedia of Human Behavior (2 ed., pp. 142-149). Elsevier Inc.

Hung, H., & Cho, V. (2008). Continued usage of e-learning communication tools: A study from the learners perspective in Hong Kong. International Journal of Training and Development.

Ifinedo, P. (2006). Acceptance and continuance intention of web-based learning technologies (WLT) use among university students in a Baltic country. The Eletronic Journal on Information Systems in Developing Countries, 23(6), pp. 1-20.

Kim, K., Trimi, S., Park, H., & Rhee, S. (Out. de 2012). The impact of CMS quality on the outcomes of e-learning systems in higher education: An empirical study. Decision Sciences Journal of Innovative Education, 4(4).

Kline, R. B. (2005). Principles and practice of structural equation modeling (2 ed.). New York: Guilford Press.

Lee, Y. H., Hsieh, Y. C., & Hsu, C. N. (2011). Adding innovation diffusion theory to the technology acceptance model: Supporting employees intentions to use e-learning systems. Educational Technology & Society, 14(4), pp. 124-137.

Liao, C., Chen, J. L., & Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23, pp. 2804-2822.

Liao, C., Chuang, C. L., Yu, P. L., Lai, T., & Hong, N. L. (2011). Applying the expectancy disconfirmation and regret theories to online consumer behavior. Cyberpsychology, Behavior and Social Networking, 14(4), pp. 241-248.

Lin, K. M. (2011). E-learning continuance intention: Moderating effects of user e-learning experience. Computers & Education, 56, pp. 515-526.

Maroco, J. (2010). Análise de equações estruturais: Fundamentos teóricos, software e aplicações (1 ed.). Perô Pinheiro: Report Number.

Mulaik, S. A., James, L. R., Alstine, J. V., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness of fit indices for structural equation models. Psychological Bulletin, 105(3), pp. 430-445.

Nobre, S. (2006). O algoritmo PLS path model. Dissertação de Mestrado, Universidade Nova de Lisboa, Instituto Superior de Estatística e Gestão da Informação.

Oliver, J. (2009). Evaluating the expectations disconfirmation and expectations anchoring approaches to citizen satisfaction with local public services. Journal of Public Administration Research and Theory, 19(1), pp. 107-123.

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), pp. 460-469.

Oliver, R. L., & Swan, J. E. (1989). Consumer perceptions of interpersonal equity and satisfaction in transactions: A field survey approach. Journal of Marketing, 53(2), pp. 21-35.

Paechter, M., Maier, B., & Macher, D. (2010). Students expectations of and experiences in e-learning: Their relation to learning achievements and course satisfaction. Computers & Education, 54, pp. 222-229.

Parasuraman, A., Zeithalm, V., & Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), pp. 12-37.

Prajapati, B., Dunne, M., & Armstrong, R. (2010). Sample size estimation and statistical power analysis. Ot Peer Reviewed.

Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. The International Journal of Management Science, 36(1), pp. 64-75.

Ringle, C., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS_SEM in MIS Quarterly. MIS Quarterly, 36(1).

Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human Computer Studies, 64, pp. 683-696.

Terzis, V., Moridis, C., & Economides, A. (2013). Continuance acceptance of computer based assessment through the integration of user's expectations and perceptions. Computers & Education, 62, pp. 50-61.